Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Comput Struct Biotechnol J ; 18: 3734-3744, 2020.
Article in English | MEDLINE | ID: covidwho-2284185

ABSTRACT

The emergence and continued spread of SARS-CoV-2 have resulted in a public health emergency across the globe. The lack of knowledge on the precise mechanism of viral pathogenesis is impeding medical intervention. In this study, we have taken both in silico and in vitro experimental approaches to unravel the mechanism of viral pathogenesis associated with complement and coagulation pathways. Based on the structural similarities of viral and host proteins, we initially generated a protein-protein interactome profile. Further computational analysis combined with Gene Ontology (GO) analysis and KEGG pathway analysis predicted key annotated pathways associated with viral pathogenesis. These include MAPK signaling, complement, and coagulation cascades, endocytosis, PD-L1 expression, PD-1 checkpoint pathway in cancer and C-type lectin receptor signaling pathways. Degree centrality analysis pinned down to MAPK1, MAPK3, AKT1, and SRC are crucial drivers of signaling pathways and often overlap with the associated pathways. Most strikingly, the complement and coagulation cascade and platelet activation pathways are interconnected, presumably directing thrombotic activity observed in severe or critical cases of COVID-19. This is complemented by in vitro studies of Huh7 cell infection and analysis of the transcriptome and proteomic profile of gene candidates during viral infection. The most known candidates associated with complement and coagulation cascade signaling by KEGG pathway analysis showed significant up-regulated fold change during viral infection. Collectively both in silico and in vitro studies suggest complement and coagulation cascade signaling are a mechanism for intravascular coagulation, thrombotic changes, and associated complications in severe COVID-19 patients.

2.
Pathog Dis ; 78(4)2020 06 01.
Article in English | MEDLINE | ID: covidwho-646518

ABSTRACT

The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) around the world has led to a pandemic with high morbidity and mortality. However, there are no effective drugs to prevent and treat the disease. Transcriptome-based drug repositioning, identifying new indications for old drugs, is a powerful tool for drug development. Using bronchoalveolar lavage fluid transcriptome data of COVID-19 patients, we found that the endocytosis and lysosome pathways are highly involved in the disease and that the regulation of genes involved in neutrophil degranulation was disrupted, suggesting an intense battle between SARS-CoV-2 and humans. Furthermore, we implemented a coexpression drug repositioning analysis, cogena, and identified two antiviral drugs (saquinavir and ribavirin) and several other candidate drugs (such as dinoprost, dipivefrine, dexamethasone and (-)-isoprenaline). Notably, the two antiviral drugs have also previously been identified using molecular docking methods, and ribavirin is a recommended drug in the diagnosis and treatment protocol for COVID pneumonia (trial version 5-7) published by the National Health Commission of the P.R. of China. Our study demonstrates the value of the cogena-based drug repositioning method for emerging infectious diseases, improves our understanding of SARS-CoV-2-induced disease, and provides potential drugs for the prevention and treatment of COVID-19 pneumonia.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Drug Repositioning , Pneumonia, Viral/drug therapy , Ribavirin/pharmacology , Saquinavir/pharmacology , Bronchoalveolar Lavage Fluid/chemistry , COVID-19 , Cell Degranulation/immunology , Endocytosis/immunology , Gene Expression Profiling , Humans , Lysosomes/immunology , Molecular Docking Simulation , Neutrophil Activation/immunology , Pandemics , SARS-CoV-2 , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL